If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-1.8q^2+4q+20=0
a = -1.8; b = 4; c = +20;
Δ = b2-4ac
Δ = 42-4·(-1.8)·20
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{10}}{2*-1.8}=\frac{-4-4\sqrt{10}}{-3.6} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{10}}{2*-1.8}=\frac{-4+4\sqrt{10}}{-3.6} $
| 2x^2+8x-86=4 | | y-5=(8)-5 | | (2x+40)=(76+x) | | 5n-1=13+3n | | 7(2m-1)-3/5m=6/5(-3m) | | 8x+1.50=49.50 | | h-4=18 | | 9x+8.6=71.6 | | 3m-11=-8 | | 10x-15=5x+435 | | -3(u+3)=-6u-15 | | a+18=45 | | 120+120+x+2x+x=540 | | k-2=29 | | 6y-34=8(y+6) | | c-6=21 | | m-24=17 | | 20+4q-1.8q^2=0 | | f+12=31 | | 4^n+4^n+4^n+4^n=4^12 | | 45+v=82 | | 8x-71=180 | | 5y-(4+2y)=-22 | | 4(x=1)=5x-2x+7 | | 4(3x+2)=(2x+3)+4x | | 2(3x-4)=4x-28+6x | | 120+150x+7x=13500 | | 14+y=30 | | Y=9x-20 | | 1(6x+1)=2(3x+8) | | 40-12x=4 | | 16=18-8(-2-1w) |